Erstellung einer benutzerfreundlichen Experience Base für das Global Software Engineering Labor

Bachelorarbeit
im Studiengang Informatik

von

Florian Ludwig

Prüfer: Prof. Dr. Kurt Schneider
Zweitprüfer: Prof. Dr. Rainer Parchmann
Betreuer: M. Sc. Anna Averbakh

Hannover, 06.09.2010
Danksagung

Hiermit möchte ich mich bei allen Personen bedanken, die mich bei der Erstellung dieser Arbeit unterstützt haben. Danke.

Mein besonderer Dank gilt Frau Anna Averbakh für ihre hervoragende und herzliche Betreuung meiner Arbeit.
Abstract

1 Einleitung

1.1 Motivation und Problemstellung

Jedoch konnte sich am SE keine der Lösungen durchsetzen. Ein hierbei aufgetretenes Problem war genau jenes, das eigentlich gelöst werden sollte: Nachdem die zuständigen Entwickler nicht mehr am SE waren, fehlte wertvolles Wissen über die Wartung der verwendeten Systeme. Ein zweites Hindernis stellte die Usability der EB dar. Dies ist kein Einzelfall. So kamen auch Damodaran und Olphert in ihrer „post-implementation“ Analyse eines Electronic Information Management (EIM) Systems zu folgender Aussage:

„[L]ack of „user friendliness“ […] was perceived as most significant barrier to the uptake of the EIM system“ [6]

Das Unterschätzen der Bedeutung von Usability ist jedoch nicht auf EIM Systeme begrenzt, sondern ein allgemeines Problem der Softwareentwicklung. Mayhew leitete eines ihrer Bücher über Usability mit folgendem Satz ein:

„One client, an insurance company, first approached me after a $3 million development project simply failed. Their users flatly refused to use the application, saying it was too difficult to learn and unusable.“ [10]

1 Einleitung

1.2 Gliederung

2 Grundlagen

In diesem Kapitel werden die Grundlagen und Begriffe der beiden Bereiche Usability Engineering und Knowledge Management erklärt.

2.1 Wissen und Erfahrung

Zuerst werden einige Definitionen aus der Literatur übernommen auf denen das Knowledge Management aufbaut. Dieses wird dann im nächsten Abschnitt beschrieben.

Definitionen nach [16]:

Informationen sind Daten, deren Bedeutung einer gegebenen Interpretation folgt.

Wissen sind Informationen, die im Kontext anderer Wissensbestände, im Verstand eines Menschen zum Zweck der Problemlösung genutzt werden können.

Erfahrung ist eine Form des Wissens. Sie besteht aus den drei Elementen:

1. Die Beobachtung eines Ereignisses, an dem aktiv oder passiv teilgenommen wird.
3. Daraus eine Schlussfolgerung, die auf spätere Entscheidungen des Beobachters durch diese Erfahrung Einfluss nimmt.

Implizites Wissen (englisch: tacit knowledge) ist Wissen, dessen sich man sich nicht bewusst ist. Dazu zählen vor allem anwendbare Fähigkeiten, die nicht in Worte gefasst sind oder werden können.

Explizites Wissen (englisch: explicit knowledge) ist Wissen, das formuliert und in Worte ausgedrückt werden kann.

2.2 Knowledge Management

Um die Effizienz eines Unternehmens zu optimieren ist es ein wichtiges Vorgehen das Wissen und die Erfahrungen, die ein Mitarbeiter gemacht hat, an andere weiterzugeben.
Ein weiterer Wunsch ist es, Erfahrung zu archivieren und auch dann darüber verfügen zu können, wenn ein Mitarbeiter die Abteilung wechselt oder das Unternehmen verlässt.

Knowledge Management geht auf Nonaka und Takeuchi zurück, die mit ihrer Wissensspirale (englisch: Knowledge Lifecycle, auch SECI-Modell) den Grundbaustein gelegt haben. Diese Spirale beschreibt den Übergang von Wissen in unterschiedliche Formen (implizites und explizites). Die vier daraus folgenden Übergangsmöglichkeiten ergeben vier in einem Kreislauf aufeinander folgende Phasen:

Abbildung 2.1: Wissensspirale nach [7], i: Individuum, g: Gruppe, o: Organisation

1. Sozialisierung
 Implizites Wissen wird ausgetauscht. Im Gegensatz zu anderen Arten des Austauschs passiert dies nicht bewusst. Es geschieht vielmehr durch Interaktion der Mitarbeiter oder gemeinsame Aktivitäten. Der Austausch findet von Individuum zu Individuum statt. Er passiert im Alltag und parallel zum Knowledge Management.

2. Externalisierung
 Implizites Wissen wird in Worte, Bilder oder ähnliche Formate gefasst und so in explizites Wissen umgewandelt. Besonders wichtig ist das Umwandeln von speziellem oder persönlichem Wissen in allgemein verständliche Form. Individuen werden bei der Externalisierung Gruppenmitglieder, indem sie ihr Wissen zu einer Gruppe
hinzufügen. Das Wissen wird dabei in eine Form gebracht, die beim Knowledge Management verarbeitet werden kann.

3. Kombination
Die gesammelten Erfahrungen verschiedener Gruppen werden zusammengefasst und werden zu komplexerem explizitem Wissen. Das gesammelte Wissen wird dabei, zum Beispiel in Meetings, von den Gruppen an andere Mitarbeiter, also an die Organisation, weitergegeben. Es wird zum Beispiel in einer Experience Base organisiert.

4. Internalisierung
Das gesammelte explizite Wissen wird wiederum in implizites Wissen umgesetzt. Dazu entscheiden Individuen, welches Wissen für sie wichtig ist. Dieses eignen sie sich dann, zum Beispiel durch Weiterbildungen und Anwendung, an. Sie können dabei auf das im Knowledge Management gesammelte Wissen zurückgreifen.

Die Aufgabe des Knowledge Managements ist es, diese vier Phasen zu unterstützen. Collison und Parcell umschreiben diese Aufgabe mit:

„You can’t manage knowledge – nobody can. What you can do is to manage the environment in which knowledge can be created, discovered, captured, shared, distilled, validated, transferred, adopted, adapted and applied.“ [5]

2.3 Experience Bases
Eine Experience Base ist ein Werkzeug des Knowledge Managements zur Speicherung von Wissen: von Erfahrungsberichten bis hin zu Best Practices [18]. Im einfachsten Fall handelt es sich bei einer EB um eine Datenbank, in der Texte gespeichert und gesucht werden können.

2.4 Usability
Usability ist ein Qualitätsmerkmal, wie einfach etwas zu benutzen ist [12]. Nach ISO 9241 wird Usability durch Effektivität, Effizienz und Zufriedenheit der Nutzer gemessen. Nielsen hingegen unterteilt Usability in fünf Qualitätsaspekte [15]:

Erlernbarkeit (englisch: Learnability) Wie einfach ist es für Nutzer grundlegende Aufgaben durchzuführen, wenn sie dem Design das erste Mal begegnen?
2 Grundlagen

Effizienz (englisch: Efficiency) Wie schnell können Nutzer Aufgaben durchführen, wenn sie das Design kennen gelernt haben?

Einprägbarkeit (englisch: Memorability) Wie schnell können Nutzer sich wieder einarbeiten, wenn sie das Design eine Zeit lang nicht benutzt haben?

Fehler (englisch: Errors) Wie viele Fehler machen Nutzer, wie gravierend sind diese und wie leicht können Nutzer sich von ihnen erholen?

Zufriedenheit (englisch: Satisfaction) Wie angenehm ist es, das Design zu verwenden?

2.5 Usability Engineering Prozess

Der Usability Engineering Prozess sieht zwei Abkürzungen im zweiten Abschnitt für einfache Software Projekte vor (gestrichelt Linien in Abbildung 2.2). Aufgrund der zeitlichen Vorgaben ist die Anzahl der Iterationen im dritten Level ebenfalls fest vorgegeben (n=2).

Abbildung 2.2: „The Usability Engineering Lifecycle“ nach Mayhew
3 Anforderungsanalyse

3.1 Nutzer und Rollen

Der Usability Engineering Lifecycle beginnt mit der Analyse des wichtigsten Elements: den Nutzern. Zunächst soll in diesem Kapitel geklärt werden, wer die Nutzer der GloSE Base sind und unter welchen äußeren Umständen sie die Base nutzen werden. Im nächsten Kapitel (3.2) wird die aktuelle Situation der Nutzer detaillierter untersucht. Kombiniert ergeben die beiden Kapitel eine wichtige Grundlage für alle späteren Designentscheidungen, da es kein allgemeingültig perfektes Nutzerinterface gibt, sondern nur eines, das möglichst effizient von einer definierten Nutzergruppe verwendet werden kann [10].

Daher muss zuerst die Zielgruppe festgelegt werden. Bei der GloSE Base ist dies mit Hilfe verschiedener Kriterien möglich.

Weitere Eingrenzungen können dadurch gemacht werden, dass die GloSE Base domänenspezifisch für die Softwareentwicklung verwendet werden soll. Bei allen beteiligten Berufsgruppen kann Hintergrundwissen über informationstechnische Vorgänge vorausgesetzt werden. Der Umgang mit Computer und Internet ist für die Zielgruppe alltäglich.

Umfeld

Die Nutzung der GloSE Base ist für alle Nutzer entweder Bestandteil der Arbeit oder des Studiums. Daraus ergibt sich, dass die Base ...

1. nicht rein freiwillig genutzt wird.
2. primär in Räumen der Universität Verwendung findet.
3. nicht in direkter Konkurrenz zu einem anderen Produkt steht.
3 Anforderungsanalyse

Rollen

Im Folgenden sind Benutzergruppen aufgelistet wie sie im GloSE Labor vorkommen.

Leitung

Die Leitung möchte Erfahrungen sichern, um Lehre und Forschung zu verbessern. Das Knowledge Management selbst ist jedoch auch Forschungsgebiet und daher ist hier die Entstehung und Verwendung der GloSE Base selbst Subjekt in wissenschaftlichen Betrachtungen.

Projektorganisation (Projektbetreuung)

Projektorganisation (Projektvorbereitung)

Der Projektleiter ist nicht nur eine wichtige Quelle für die GloSE Base, sondern gleichzeitig auch Konsument der Informationen. In der Vorbereitung und zu Beginn eines neuen Projektes benötigt er Hilfen zur Planung. Dafür möchte er auf die Erfahrungen vergangener Projekte zurückgreifen.

Auch ein unerfahrener Projektleiter kann bereits während der Projektvorbereitung für das Knowledge Management wertvolle Informationen über die Qualität der Informationen in der Base liefern. Jedoch ist die zur Verfügung stehende Zeit, um diese Erfahrungen bereitzustellen, sehr knapp.

Projektteilnehmer

Projektbeobachter

Experience Engineer

Die Aufgabe des Experience Engineers ist es, die gesammelten Erfahrungen (hier vorwiegend Beobachtungsbögen und LIDs) zu verdichten. Die Teilnahme am Projekt selbst
3.2 Kontextabhängige Anforderungsanalyse

In diesem Analyseschritt geht es darum, Hintergrundinformationen über die Arbeitsprozesse, die mit Software unterstützt oder automatisiert werden sollen, zu sammeln [10]. Die Untersuchung der aktuellen Situation ist ein wichtiger Schritt in der nutzerorientierten Gestaltung. Es hilft, nicht nur die bestehende Problematik, sondern auch die Nutzer, deren Jargon, ihre Denkmodelle und Arbeitsprozesse zu verstehen. Auf dieses Wissen kann später zurückgegriffen werden, um die Usability des Produktes zu verbessern. Insbesondere kann der Umlernprozess der Nutzer an die Software verkürzt werden. Beobachtungen und Gespräche mit den Beteiligten bilden die wichtigste Grundlage für die kontextabhängige Anforderungsanalyse. Zuerst wird in 3.2.1 eine Lehrveranstaltung des SE beschrieben und analysiert, danach in 3.2.2 die gewonnenen Informationen aus 3.2.1 verallgemeinert und auf die Rollen aus 3.1 zugeordnet.

3.2.1 Das „Agile Softwareentwicklung“ Labor

In dieser Veranstaltung wurden Beobachtungsbögen, wie im Anhang als Abbildung 8.1 dargestellt, zur Erfahrungserfassung verwendet. Das Ausfüllen stand allen Beteiligten frei. Die Bögen sind stark an der Definition von Erfahrung aus dem Kapitel 2.1 angelehnt und bieten drei große Freitextfelder:

Beobachtung *Was ich beobachtet habe?*

Emotion *Warum ich es aufschreiße?*

Schlussfolgerung / Vorschlag *Was schließe ich daraus? (Tipp, Warnung, …)*

¹http://www.se.uni-hannover.de/lehre/2010sommer/ss2010_labor_xp.php (Zuletzt Besucht: 03.09.2010)
3 Anforderungsanalyse

GloSE Labors als verteiltes Projekt zusammen mit der TU Claustal angeboten. Daher gibt es hier Kategorien wie „Verteilte Entwicklung“ und „Agile Entwicklung.“ Darüber hinaus gibt es noch die Felder „Name, Kürzel“ und „Tag, (Zeit)“ die bei der Interpretation wichtige Hinweise auf den Kontext der jeweiligen Beobachtung geben. Das ID-Feld wird von dem Experience Engineer, der die Bögen digitalisiert, ausgefüllt.

Insgesamt wurden 35 Beobachtungsbögen von sechs verschiedenen Personen innerhalb einer Woche ausgefüllt, verteilt wie in Abbildung 3.1. Eine starke Abweichung von der Gleichverteilung ist auffällig ($\sigma \approx 4,8$). Der Hauptanteil liegt bei zwei am Projekt selbst unbeteiligten Beobachtern ($n_e = 12$ und $n_f = 13$). Von den Entwicklern hat sich nur einer mit einem Bogen beteiligt.

![Abbildung 3.1: Verteilung von 35 Beobachtungsbögen auf 6 Autoren; Ein Bogen wurde von zwei Personen (d und f) gemeinsam ausgefüllt, daher $\sum = 36$](image)

3.2.2 Allgemein

Der Prozess des Erfahrungsmanagements am SE ist im Folgenden in fünf Abschnitte unterteilt. Bei diesen handelt es sich um die in den Grundlagen definierten (2.2), jedoch werden „Sammeln und Analysieren“ voneinander getrennt betrachtet.

Sammeln von Erfahrungen

Am Fachgebiet Software Engineering werden zur Sammlung von Erfahrungen hauptsächlich zwei Methoden eingesetzt. Beobachtungsbögen werden während des gesamten Projektzeitraumes individuell und von Hand ausgefüllt. Light-Weight Documentation of Experiences (LIDs) werden meistens in Gruppen nach Abschluss des Projektes abgehalten. Während eines LIDs ist ein Protokollant damit beauftragt, die berichteten Erfahrungen elektronisch festzuhalten [17, 18]. Es gibt am SE MS Word Templates, die für LIDs verwendet werden, daher sind alle LIDs stark strukturiert. Innerhalb eines Abschnittes sind sie jedoch sehr unterschiedlich, sowohl in Form als auch Detailltiefe. Am
LID zum ASE10 nahmen der Leiter des Fachgebiets, beide Organisatoren, zwei Projektbeobachter, sowie ich als Protokollant teil. Obwohl der zeitliche Rahmen eng war, empfand ich die Stimmung während des LIDs nicht als hektisch.

Während des Prozesses der Softwareentwicklung sind Computer bei den meisten Schritten schnell erreichbar, daher wäre das Ausfüllen der Beobachtungsbögen auch direkt in digitaler Form möglich. Jedoch wird zum aktuellen Zeitpunkt die analoge Variante favorisiert. Dafür gibt es mehrere Gründe:

1. Die Übersichtlichkeit der Entwicklungsumgebung am Computer wird nicht durch zusätzliche Programme bzw. Fenster beeinträchtigt.
2. Zettel sind oft schneller zugänglich als Software, die erst gestartet werden muss.
5. Die zuvor geforderte lokale Mobilität (3.1) ist durch Zettel besser realisierbar.

Archivierung

Die Fragebögen selbst werden in Ordnern archiviert, aber auch digitalisiert. Die elektronischen Versionen der Fragebögen sowie die LIDs stehen den Mitarbeitern auf einem Dateiserver zur Verfügung. Eine Volltextsuche innerhalb der Bestände ist nicht möglich.

Einige Mitarbeiter haben sich auf ihren Rechnern lokal Wiki-Software installiert, um sich eigene Notizen und Erfahrungen zu speichern.

Analyse / Verdichten

Am Fachgebiet Software Engineering ist eine einzelne wissenschaftliche Hilfskraft hiermit beauftragt. In einem Interview mit ihr wurde der Prozess, dem sie dabei folgt, formuliert. In einem späteren Meeting in größerem Rahmen wurde dieser zu einer Best Practice zur Verdichtung von Erfahrungen am SE. Der Prozess lässt wie folgt zusammenfassen:

1. Abtippen eines Bogens in ein Textdokument.
3 Anforderungsanalyse

2. Interessante Passagen des Bogens herauskopieren in mindestens ein anderes Dokument, in denen diese thematisch gruppiert werden.

3. Dieser Vorgang wird wiederholt, bis alle Bögen digitalisiert wurden.

5. Gemeinsamkeiten und Auffälligkeiten kommentieren.

Wiederverwenden

Die erarbeiteten Empfehlungen stehen den Organisatoren bzw. Betreuern in späteren Veranstaltungen und Projekten zur Verfügung.

Aktivieren

Ein Feedback an den Experience Engineer über die Dokumente findet meist nicht statt. In Besprechungen kommt es zwar zum Austausch, jedoch gibt es keine festen Feedback Kanäle oder Prozesse direkt zum Aktivieren von Erfahrungen.
3 Anforderungsanalyse

3.3 Plattformanalyse

In der Plattformanalyse sollen die Möglichkeiten und Einschränkungen, die durch Soft- und Hardware der GloSE Base gegeben sind, erarbeitet werden [10]. Bereits in der Aufgabenstellung war die Verwendung der Software MediaWiki\(^2\) vorgesehen.

Es werden keine Einschränkungen durch die verwendete Hardware angenommen.

\(^2\)http://www.mediawiki.org/
\(^4\)http://semantic-mediawiki.org/
3 Anforderungsanalyse

3.4 Allgemeine Designprinzipien

Im Rahmen der allgemeinen Designprinzipien (englisch: General Design Principles) gilt es zu untersuchen, was aus vergangenen Usability Studien gelernt und übertragen werden kann. Über Usability im World Wide Web wurden bereits viele Bücher und Paper veröffentlicht, die eine solide Grundlage für generelle Design Prinzipien bilden [10]. Usability im Web ist ein umfangreich erforschtes Thema. Zuerst soll 3.4.1 einen kurzen Überblick in diese Arbeiten geben. Danach werden in 3.4.2 Erfahrungen und Studien speziell zum MediaWiki vorgestellt. Diese liefern nicht alle direkt Designprinzipien, aber Hinweise worauf im späteren Design zu achten ist.

3.4.1 Top 10 Fehler im Web Design

1. Schlechte Suche
 Eine zunehmend größer werdende Anzahl (in 2007 bereits 57%) an Webnutzern navigiert über die Suche einer Webseite [13, 12]. Daher ist eine gut funktionierende Suche Voraussetzung sowohl für die gewünschte Effizienz als auch die Zufriedenheit der Nutzer.
 In der GloSE Base steht durch das MediaWiki bereits eine Volltextsuche für alle Inhalte zur Verfügung.

2. PDF Dokumente für das Lesen im Internet
3 Anforderungsanalyse

3. Gleiche Farbe für bereits besuchte und nicht besuchte Links
 Das Ändern der Farbe bei besuchten Links hilft den Nutzern beim Navigieren über die Seite. Vor allem beschleunigt es die Suche nach Informationen, indem vermieden wird, dass ein Nutzer dieselbe Seite mehrmals erreicht. Das kann zu Problemen mit der Navigation und Orientierungsverlust führen.

5. Feste Schriftgröße
 Nutzer möchten unter Umständen die Schriftgröße einer Seite an ihre Sehstärke oder die Bildschirmgröße beziehungsweise -auflösung anpassen. Wird ihnen dies nicht gestattet, wird das Lesen der Seite und somit das Finden relevanter Informationen erheblich schwerer.

7. Alles das aussieht als wäre es Werbung
 Nutzer die regelmäßig mit dem Internet in Kontakt kommen, sind gut darauf trainiert, alles das aussieht wie Werbung zu ignorieren. Es kann dadurch vorkommen, dass wichtige Informationen nicht gefunden werden, da sie als Werbung angesehen und ignoriert werden. Gründe hierfür sind Pop-Ups, aufdringliche Animationen oder Bereiche, die als Banner erscheinen.

8. Gegen Design Konventionen verstoßen

9. Neue Browser Fenster öffnen

3.4.2 MediaWiki Usability

In 2009 begann die Organisation hinter Wikipedia, die Wikimedia Foundation, eine Usability-Initiative. Deren Ziele, Ergebnisse und Bedeutung für diese Arbeit werden im Folgenden dargelegt. Das Ziel der Initiative beschreibt die Stiftung selbst wie folgt:
„The goal of this initiative is to measurably increase the usability of Wikipedia for new contributors by improving the underlying software on the basis of user behavioral studies, thereby reducing barriers to public participation.11

– Wikipedia Usability Initiative [8]

Die Initiative wurde bis zum Ende dieser Arbeit nicht beendet. Sie liefert jedoch parallel zu dieser Arbeit Verbesserungen der Usability am MediaWiki sowie wertvolle Studien, die öffentlich dokumentiert wurden.

3.4.3 Ergebnisse einer früheren Studienarbeit

3 Anforderungsanalyse

Abbildung 3.2: Fragebogen Auswertung aus [2]

3.5 Usability Ziele

Auf Grundlage der in Kapiteln 3.1 bis 3.4 gewonnenen Erkenntnisse wird in diesem Kapitel eine Zielsetzung für die GloSE Base vorgenommen. Die Usability Ziele zu formulieren ist hauptsächlich aus folgenden Gründen vorteilhaft [10]:

1. Die Ziele dienen in Evaluierungen als Grundlage und Maßstab für die späteren Designentscheidungen.

2. In Design Diskussionen geben die Ziele einen Leitfaden, auf den sich berufen werden kann. (Hier aufgrund der kleinen Teamgröße weniger relevant)

Ein Zwiespalt im Usability Engineering, dem sich jedes Projekt stellen muss, ist die Entscheidung zwischen „schnell erlernbar“ und „effizient von erfahrenen Nutzern.“ Bereits bei dieser grundlegenden Fragestellung wird klar, dass für die GloSE Base keine einheitlichen Ziele für alle Nutzer gesetzt werden können, sondern eine Differenzierung nach ihren Rollen vorgenommen werden muss.

Experience Engineer

Administration

Alle anderen Rollen

4 Designentscheidungen

4.1 Technische Designentscheidungen

Skins

Die Verwendung eines Skins hat im Allgemeinen keine Auswirkungen auf die Wartbarkeit, kann jedoch zwischen Skins variieren. Im Rahmen dieser Arbeit wird nicht näher auf Barrierefreiheit eingegangen, daher wird die Verwendung eines einzigen Skins empfohlen.

Erweiterungen

4 Designentscheidungen

Das Übernehmen von Erweiterungen in neue Versionen des MediaWikis ist in den meisten Fällen ohne Aufwand möglich.

MediaWiki Quelltext

4.2 Work Reengineering

Im Work Reengineering wird festgestellt, wie die GloSE Base in den bestehenden Geschäftsalltag integriert werden kann. Dafür müssen neue Arbeitsprozesse und Strukturen entwickelt werden. Mithilfe der Untersuchung aus der kontextabhängigen Anforderungsanalyse (Kapitel 3.2) kann hierbei der Umschulungsaufwand minimiert werden, in dem bestehende Abläufe nur verändert werden, wenn dadurch ein aufzeigbarer Effizienzgewinn erreicht wird. Der Leitfaden für diese Aufgabe bilden die Ziele aus Kapitel 3.5. In diesem Schritt findet noch kein GUI Design statt [10].

Die Interaktion, beziehungsweise Kommunikation, zwischen Experience Engineer und Ratsuchendem soll zum Teil in die GloSE Base verlegt werden. Dies soll den Austausch anregen und archivieren.
4 Designentscheidungen

4.3 Konzeptionelles Modell-Design

Das konzeptionelle Modell-Design (englisch: Conceptual Model Design) ist der erste Schritt der tatsächlichen Entwicklung der Benutzeroberfläche. Es ist die Strukturierung des Nutzerinterfaces zu entwerfen [10]. In diesem Fall ist zu klären, welche Seiten (bei Desktop-Software welche Fenster) und welche Navigationswege zwischen diesen Seiten es gibt.

Abbildung 4.1: Seitenaufteilung in der GloSE Base

Für die Navigation in der GloSE Base zwischen Dokumenten bieten sich verschiedene Prinzipien an.

Das erste Prinzip, die Navigation entlang von Prozessen, wie von Buchloh verwendet [3], ist vielen SE Mitarbeitern vertraut. Nahezu alle Vorgänge am SE sind durch Prozesse
4 Designentscheidungen
definiert und daher lassen sich Erfahrungen gut in Prozessabschnitte einsortieren. Nutzer finden so schnell Informationen zu ihrer aktuellen Situation.

Durch die starke Ähnlichkeit von Projekten beziehungsweise von Lehrveranstaltungen ist eine Gruppierung nach diesen sinnvoll. Dieses zweite Zuordnungsprinzip macht es besonders für die Projektorganisatoren einfacher sehr schnell Informationen zu finden.

Das dritte Prinzip ist die bidirektionale Verlinkung von Dokumenten entlang ihrer Entstehung im Knowledge Management. Werden mehrere kontextabhängige Beobachtungen $A_1...n$ zu einer allgemeinen Beobachtung oder Best Practises B verdichtet, verweisen alle $A_1...n$ jeweils auf B. So haben Nutzer, die bei ihrer Suche nach Informationen bereits Beobachtung z.B. A_1 gefunden haben, eine Möglichkeit schnell auf B zu stoßen. Die bereits bearbeiteten Informationen in B sind für den Nutzer einfacher auf die eigene Situation übertragbar. Die Verlinkung von B zu allen A_n ist wichtig, um Nutzern mehr Hintergrundinformationen zu geben. Dadurch helfen sie bei der Internalisierung, indem sie allgemeine Aussagen durch konkrete Beobachtungen authentischer und nachvollziehbarer machen.

Alle drei vorgestellten Prinzipien sollen durch die GloSE Base unterstützt werden.
5 Umsetzung

Im Folgendem werden die Funktionalitäten der GloSE Base beschrieben. Die Reihenfolge der Kapitel ist nicht chronologisch, sondern thematisch. Die Ergebnisse der Usability Tests die in diesem Rahmen stattfanden werden an den Stellen angeführt, an denen sie Einfluss genommen haben. In 5.9 sind die Tests selbst noch einmal zusammengefasst und in weiteren Details beschrieben.

5.1 MediaWiki

Diese Änderungen stehen im Einklang mit den Designentscheidungen aus 4.3 und ???. Um die gewünschte Anlehnung an Wikipedia zu erhalten ist es notwendig, diese für die GloSE Base zu übernehmen.

5.2 Semantik

„Another observation is that over half (58%) of the content is annotated in purely unstructured form; the remaining 23% and 19% annotated in either semi-structured or totally structured formats respectively.“ [4]

Im Knowledge Management wird die Speicherung von Wissen häufig auf semantischen Grundlagen aufgebaut [16]. Auch die GloSE Base hat einen semantischen Unterbau. Die Verwendung dieser Technologie bringt viele Vorteile, aber auch einige Nachteile mit sich.


```
{{#ask: [[Category:Beobachtung]] [[Prozess::SWP-Analyse]]
  | ?Emotion
  | ?Schlussfolgerungen
}}
```

Diese Funktion wird außer von dem Experience Engineer von keiner anderen Rolle genutzt. Dieser kann solche Abfragen für die eigene Nachforschung nutzen oder mit ihnen neue Verlinkungen beziehungsweise Navigationsmöglichkeiten für andere Nutzer schaffen.

5.3 Editieren und Erstellen von Inhalten

Zum Editieren von Inhalten steht durch das MediaWiki standardmäßig ein sehr schlichter Editor zur Verfügung, wie er in Abbildung 5.1 dargestellt ist. Die Wikimedia Usability Initiative kam, wie auch \(^2\) (siehe 3.4.3), zu dem Ergebnis, dass die Wiki-Syntax Nutzer abschreckt. Um diesem Problem entgegen zu wirken wurde ein neuer Editor entwickelt wie er in Abbildung 5.2 zu sehen ist.

Um das Problem der komplexen Syntax weiter zu umgehen, wird in der GloSE Base gebrauch von der Erweiterung Semantic Forms gemacht\(^2\). Diese bietet die Möglichkeit Formulare zu entwerfen, mit denen Seiten erstellt und editiert werden können. Im Anhang in Abbildung 8.2 ist ein solches Formular zu sehen. Es zeigt das Formular, wie es von dem Experience Engineer des SE genutzt wurde, um die Beobachtungsbögen

\(^1\)http://semantic-mediawiki.org/wiki/Semantic_MediaWiki (zuletzt besucht 03.09.2010)
\(^2\)http://www.mediawiki.org/wiki/Extension:Semantic_Forms (zuletzt besucht: 03.09.2010)
Umsetzung

Abbildung 5.1: Standard Editor des MediaWikis

<table>
<thead>
<tr>
<th>Writext</th>
<th>Vorschau</th>
<th>Änderungen</th>
<th>Veröffentlichen</th>
<th>Abbrechen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 5.2: Editor der Wikimedia Usability Initiative

des ASE10 zu digitalisieren. Der Aufbau des Formulars ist stark an dem Bogen selbst (Abbildung 8.1) orientiert.

5 Umsetzung

Abbildung 5.3: Autovervollständigung in einem Formular

5.4 Prozesse

Abbildung 5.4: Der SWP-Prozess in der GloSE Base

5.5 Feedback

Nutzer, die Feedback geben, greifen selten mit dieser Intention auf die GloSE Base zu. Meistens wird es sich um Projektorganisatoren handeln, die nach Hilfen suchen. Um

\(^3\)http://www.flowchartwiki.org/
5 Umsetzung

den zeitlichen Beschränkungen gerecht zu werden, ist die Feedbackfunktion möglichst schnell zu bedienen. Das Prinzip hinter der Feedbackfunktion der GloSE Base ist, dass jeder so viel Feedback geben kann, wie es seine Zeit erlaubt. Das Minimum ist hierbei die Beantwortung der Frage, ob das aktuelle Dokument hilfreich war. Der genaue Ablauf ist in Abbildung 5.5 dargestellt.

\[\text{Hilfreich} \quad \text{ja} \quad \text{nein}\]

\[\begin{array}{c}
\text{ja} \\
\text{nein} \\
\text{not what I searched for} \\
\text{this page is not comprehensive enough} \\
\text{this page is too unclear and/or long} \\
\text{I have experienced it differently / different opinion}
\end{array}\]

Abbildung 5.5: Feedback Ablauf

5.6 Verdichten

5.7 Sicherheit und Nutzerrecht

Die Nutzerrechtesverwaltung wie sie im MediaWiki standardmäßig existiert reicht nicht aus, um den Anforderungen die eine Experience Base, aufgrund der Speicherung von persönlichen Äußerungen hat, gerecht zu werden. Daher ist die Installation von Erweiterungen nötig, die diese liefern. Obwohl im Rahmen dieser Arbeit mehrere Extensions evaluiert wurden, wird die GloSE Base ohne eine dieser Extensions ausgeliefert. Dazu folgendes Zitat aus der Dokumentation von MedaWiki:

„If you need per-page or partial page access restrictions, you are advised to install an appropriate content management package. MediaWiki was not written to provide per-page access restrictions, and almost all hacks or patches promising to add them will likely have flaws somewhere, which could lead to exposure of confidential data. We are not responsible for anything being leaked, leading to loss of funds or one’s job.” – MediaWiki Entwickler

Der Einsatz der GloSE Base in einem Personenkreis, der eine präzise Nutzerrechteverwaltung braucht sind alle verwendeten Erweiterungen einem Sicherheitsaudit zu unterziehen. Da dies im Rahmen dieser Arbeit nicht möglich war, wird die Base ohne die Funktionalität ausgeliefert, um keine falschen Eindruck von Sicherheit zu geben.
5.8 Startseite

Der linke untere Bereich der Seite ist statisch und bietet schnellen Zugriff auf alle Formulare zum Einstellen von neuen Inhalten. Der rechte Bereich wird durch die Erweiterung Wiki Kategorie Tag-Wolke generiert und zeigt alle Kategorien an, die es in der GloSE Base gibt. Diese sind um so größer, um so mehr Inhalte es zu einer Kategorie gibt.

5.9 Usability Tests

Im Rahmen der Arbeit wurden mehrere Usability Tests durchgeführt. Bei den Tests ging es um die Qualitative Datenerhebung, keine Quantitative. Die Tests waren durch ein Semi-Strukturiertes Interview begleitet. Die Probanden wurden aufgefordert laut zu denken und auch zu erwähnen, wenn sie die Software gar nicht für die geforderte Aufgabe nutzen würden. Da die Inhalte der Base vollständig Anonymisiert waren ist jedoch davon auszugehen, dass dies Einfluss auf das Wahrnehmen dieser Möglichkeit hatte. In einer realen Situation hätten mehr Interaktionen mit Dritten zum Zweck der Nachfrage stattgefunden, als die Probanden während des Testes erwähnten.

Die Testdurchführung fand in den Räumen des SE statt. Für keinen der Probanden war dies sein Arbeitsplatz, jedoch für die beiden SE Mitarbeiter unter den Probanden eine bekannte Räumlichkeit.

Die Aufnahmen der Tests sind dieser Arbeit auf CD beigefügt.

\[4\text{http://www.mediawiki.org/wiki/Extension:RandomInclude} \text{(zu letzt besucht 02.06.2010)}\]
\[5\text{http://www.mediawiki.org/wiki/Extension:WikiCategoryTagCloud} \text{(zu letzt besucht 03.06.2010)}\]
Proband 1

- Wissenschaftlicher Mitarbeiter seit ca. 1 Jahr
- Studierte Informatik in Hannover, MSc
- MediaWiki: benutzt und sehr wenig editiert
- Verwendet hauptsächlich Firefox als Browser

Auswertung: Der Proband hat zu schnell getippt, so dass die Autovervollständigung nicht bemerkt wurde. Es ist zudem aufgefallen, dass er die Suche des MediaWiki nicht verwendet hat.

Proband 2

- Informatikstudent, 6. Semester
- Verwendet Wikipedia fast täglich, hat aber noch kein MediaWiki bearbeitet
- Verwendet hauptsächlich Google Chrome als Browser, hat aber auch Erfahrungen mit Firefox

Auswertung: Der Proband hat die Feedback-Funktion zuerst vollständig ignoriert. Als er sie verwendet hat, hat er die Beschriftung „Titel“ übersehen. Dementsprechend hat er seine Feedback-Beschreibung in das falsche Feld eingegeben. Er war zudem irritiert, als die Abgabe des Feedback ihn auf eine neue Seite geführt hat.

Proband 3

- Wissenschaftlicher Mitarbeiter
- Organisierte das Labor „Agile Softwareentwicklung“
- Verwendet Opera als Browser

Auswertung: Bei dem Probanden sind keine speziellen Verhaltensmuster aufgefallen.

Allgemeine Auswertung

In vielen Fällen wurden die auf jeder Seite angezeigten grauen Informationskästen nach einmaliger Betrachtung für unwichtig befunden und ignoriert. Dass sich deren Inhalt ändert, wurde nicht bemerkt. Außerhalb der Wiki-eigenen Suche wurden zudem nur
5 Umsetzung

selten andere Möglichkeiten zum Suchen genutzt. In nur einem Fall wurde auf eine externe Suchmaschine zugegriffen, obwohl dies nicht verboten oder teilweise sogar explizit erlaubt wurde. Die Suchfunktion des Browsers wurde in keinem Fall verwendet, obwohl sie die Arbeit mit langen Texten vereinfacht hätte. Den Probanden war außerdem der Unterschied zwischen verschiedenen Dokument-Typen nicht klar. Darüber hinaus wurde stellenweise versucht, automatisch generierte Überschriften zu bearbeiten, da sie nicht als solche erkenntlich waren. Es hat sich auch gezeigt, dass die Möglichkeit, ein Formular zum Bearbeiten einer Seite zu verwenden, die Nutzer irritiert hat.
6 Fazit und Ausblick

6.1 Ausblick

Die Arbeit liefert sowohl konzeptionelle als auch technische Grundlagen für weitere Arbeiten.

6.1.1 LIDs

Die Extension „Drafts“ bietet eine sehr gute Lösung für die beschriebene Problematik, ist jedoch inkompatibel mit dem Editor der Usability Initiative.

6.1.2 Feedback

Die Möglichkeiten Feedback Auszuwertung sind noch sehr grundlegend und nicht Endnutzerfreundlich.

6.2 Zusammenfassung

6 Fazit und Ausblick

Verschiedene Prinzipien zur Interaktion mit einer Experience Base wurden dazu Erstellt und evaluiert.
7 Glossar

ASE10 Das Labor „Agile Softwareentwicklung“ des Fachgebietes für Software Engineering aus dem Sommersemester 2010. 10, 12, 14

RDF Resource Description Framework. Ein Framework zur Beschreibung von Inhalten für eine semantische Verwendung. 27

SECI-Modell Modell der Wissensspirale nach [7]. SECI bezeichnet die vier Phasen Sozialisierung, Externalisierung, Kombination und Internalisierung. 4

SPARQL SPARQL Protocol and RDF Query Language. Sprache für das Abfragen von RDF-Daten. 27
8 Anhang

8.1 Installation

Eine Konfiguration für alle verwendeten Plugins liegt in der datei „config.php“ bereits vor. Diese muss am Ende der LocalSettings.php eingebunden werden:

```php
require_once (' config.php ');
```

Ist dies geschehen muss noch die „update.php“ im vom Webbrowser aus ausgeführt werden, die aufgeforderten Schritte befolgt und die GloSE Base ist installiert.

8.2 Bilder
8.2.1 Beobachtungsbogen ASE10

Beobachtung zu ASE10

<table>
<thead>
<tr>
<th>Name, Kürzel</th>
<th>Tag, (Zeit)</th>
</tr>
</thead>
</table>

Beobachtung

Was ich beobachtet habe?

☐ Kategorie (Mehrfachnennung möglich)

<table>
<thead>
<tr>
<th>Menschliches</th>
<th>Technik</th>
<th>Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommunikation</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Informationsfluss</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Verteilte Entwicklung</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Agile Entwicklung</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Emotion

Warum ich es aufschreibe?

☐ Kategorie (Mehrfachnennung möglich)

☐ Problem
☐ Typisch verteilte
☐ Interessant
☐ Gute Idee

Schlussfolgerung / Vorschlag

Was schließe ich daraus? (Tipp, Warnung, ...)
8.2.2 Beobachtungsbogen ASE10 Web Formular

Abbildung 8.2: Beobachtungsbogen aus dem ASE10 als Formular in der GloSE Base; Nicht in der Endfassung, sondern wie es tatsächlich bereits genutzt wurde durch den Experience Engineering des SE
8.2.3 MediaWiki Skin

Abbildung 8.3: MediaWiki Skins: „monobook“ (oben), „vector“ (unten)
8.2.4 MediaWiki Skin

Abbildung 8.4: GloSE Base Hauptseite
Erklärung der Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig und ohne fremde Hilfe verfasst und keine anderen als die in der Arbeit angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit hat in gleicher oder ähnlicher Form noch keinem anderen Prüfungsamt vorgelegen.

Hannover, den 06.09.2010

Florian Ludwig
Literaturverzeichnis

Literaturverzeichnis

